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ABSTRACT 

New results are obtained on the propagation of 

correlations in a Boltzmann gas on the scale of the mean 

free path and the collisional time scale which appear to 

support a conjecture of M. Green 's  on this subject. 
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INTRODUCTION 

1-6 
In the past few years  much research  has been car r ied  out on just 

how the Boltzmann equation follows from the Liouville equation, and on how 

higher order  corrections to the Boltzmann equation a r e  found. 

present paper these questions a r e  re-examined using the multiple time and 

space scale approach 13' l4 which follows from the well known Bogoliubov- 

Krylov technique of nonlinear mechanics. 

ID the 
7 -12 

The major  new results which emerge from the present analysis fol- 

low from a careful exatninatiQn of the behavior of the f i rs t -order  correcticm 

to the two-particle correlation function. It i s  found that this function exhibits 

a variety of different types of behavior,among which a r e  two different kinds of 

singular behavior. 

this function, a condition on the zeroth order  correlation function obtains 

which determines i ts  behavior on the collisional time scale and the mean free 

path space scale. 

concerning the zeroth order  correlation functions. 

singular behavior for small  relative velocities which is of an integrable kind. 

We have shown that by removing the secular behavior of 

8 
This leads to the verification of a conjecture of Green's 

In addition, we have found 

The corrections arising from the singular region of phase space have been 

shown to be of higher order  than the te rms  kept in the present analysis. 

Finally, we demonstrate that the Choh-Uhlenbeck corrections to the 

Boltzmann equation do drive the system to thermal equilibrium if we assume 

that there is no secular behavior. 
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1. THE BASIC EQUATIONS AND EXPANSION PRQCEDURE 

The starting point fo r  the calculation is the B-B-GhK-Y hierarchy 

governing the reduced distribution functions f . 
s 

where 

x.. = x. - x  
w i j  -1 -j 

The notation i s  the same a s  that in Ref, 13. It i s  convenient to measure 

lengths in units of r , the range of the interaction potential $ , and to 
0 

measure t ime in units of r / v  the time of a binary interaction, with v o a v '  av 

a typical particle velocity. 
_ -  - 

The Boltzmann regime is characterized by strong interactions and 

systems which a r e  dilute. Thus, we introduce the expansion parameter f , 

such that 

E << 1 3 2 
0 av n r  = E , ( @ ) / m v  - 1  9 (1. 3)  

with ($> the characteristic strength of the potential. 

Rewriting (1.1) in dimensionless units but retaining the same labels 

as above, we obtain 
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In the following we will assume that the potential is repulsive and 

ensemble i s  spatially homogeneous. Introducing the definitions 

and 

i=l 

Our object i s  to seek an  asymptotic solution of (1. 7 )  for 

that the 

E small. 

1 We know that a simple power serieg in E does not suffice and that a more  

complicated asymptotic representation must be found. 

space scale procedure assumes that an  expansion of the form 

The multiple time and 

2 2 2 x v ..., v ] t ,  Ex E x  , Et, E x ] . . . , E  x ] E  t , . ? . )  (0) 
II* 1” *’ -S -1 -S f S = fs ( ~ l , - * , - s l  -11 -S 

2 2 2 
,Ex , Et, E x ... p x ,E t ,  ... ) (1. 8) t Efs( l )  (x ..., x v ..., v t ,  E x  

-1’ a s ’  -1’ m S  --1”” -S -1’ -$  

2 2 2 x , v ,..., v ] t ,  E x  E x  , Et, E x ..., f: x , E t ,...) t.., 2 (2 )  
E fs (zl,-**Ls -1 m S  -1’.**’ -S -1’ - 9  

will adequately represent the solution. The initial conditions on the f s  must 

also be expanded as in (1. 8). 
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It is  often convenient to introduce correlatiqn functions gs in a 

recursive manner 

P 

etc. 

It will be assumed that all the g vanish at t = 0 so that the initial state 
S 

is one of complete chaos and only correlations arising from ipteraetions 

will be present in  the system. 

11, THE LOWEST ORDER BEHAVIOR 

The lowest order  equations follow from (1.7) and a r e  

Thus, for s = 1, we find 

- s  0 a t  

a n d f o r  s 2 2 

f t  = 0, Et,.,.) . -H(O)(l,. , . ,s )  t (0)  = e  f (0) 
S S 

Throughout the paper we will indicate explicitly (as in (2. 3)) only those 

arguments of functions which need special attention drawn to them. 

The operator 
( 0 )  - -H (1, ..., S )  t s (1,. . .,s) = e - 

(2.3) 

(2.4) 

1 
was f i r s t  introduced by Bogoliubov and has been extensively studied by 

Cobep. Briefly, it replaces the phase space coordinates of the s particles 



by their values a t  time zero which a r e  calculated using the trajectories 

generated by H(O'(1,. . .,s). 

For  s = 2 ,  (2.3) becomes,upon using (1.9), 

f s t(12) g2 ( O )  (t = 0, f t ,  12) (2 .5)  

We first note the appearance of the nonphysical function g (O) (t = 0,  Et, 12) in 

(2, 5), 

and a r i s e  in a characterist ic way. 

on the t and x scales ,  i t  was implicitly assumed that the variations in 

f t  and Ex were negligible. The e r r o r  committed is of order  E as long as 

t and x are of order  unity. The general nature of this type of expansion 

2 

Such functions a re  a characteriptic feature of the procedure w e d  here  

In the present instance, in solving (2.1) 

*c* 12 
I 

12 

y* 12 

is such that these e r r o r s  are  corrected order  by order. 

tion of this procedure 

a r e  assumed to be independent variables in the s t r ic t  sense. 

In another interpreta- 

14 
the arguments of the functions on the various scales 

In the present 

paper we do not take this point of view but rather require that we be as near  

as possible to the physical "line", defined by to, Etl, E t2,  . . . with t 2 = t = 0 1  

W e  next note that (2,  5) predicts a long range, finite correlation on 

the f l z  scale in certain cases ,  even i f  g ")(t = O ,  Et) vanishes. This 

phenomenon occurs when the two particles undergo a collision in the remote 

2 

past, so that ( S  - 1) does not vanish. We will see that this region of phase 

space gives r i s e  to secular behavior in the next order.  

equilibrium , 

-t 

Note that in thermal 

("(t) has a finite range since with f ( O )  Maxwellian and energy 
82 1 
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('I vanishes for t >>1z121/ lvlzl - 8 2  c on s e r va t io n , 

To next order  (1.7) gives 

i =I 

where 
S 

In particular for  s = 1, we have 

= 1 dx dv e(12)  fZ(O) f t ,  E t ,  12) . at -2  -c2 

Upon integrating (2 .  8).  we find explicit secular behavior on the t scale 

which is removed by requiring 

a(*) 
- a€ t  = 1 dx2  - dv -2 S ( l 2 )  fZ(')(m,et, 12) 

Therefore we also get from (2.8)  

- = 1 dx dv 0 (12) [ fZ(')(t, ...) - f 2  ( 0  
a t  -2 -2 (-1 ... >I * 

(2.9) 

In order  to demonstrate that the decomposition of (2.  8) into (2.  9) 

and (2.10) is valid, we must show that acceptable behavior for the time 

development of f (*) in  Et and f (') in t results. In contradistinction to 1 1 

other treatments of this problem, we cannot i n  fact demonstrate this here 

since we have no knowledge of g ( 0 )  ( t r  0 ,  Et) and  further cannot obtain any 2 

(2.10) 
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information on i t  in this order  of approximation. We must therefore pro- 

ceed to next order  and, among other things, look for a determination of 

(O) (t  = 0 ,  Et). 82  

(1 1 3.11, BEHAVIOR O F  f2  

(1 1 In this section we examine the behavior of f in those regions of 2 

phase space where Iv I is of order  unity and Ix I i s  larger than unity - 12 - 12 

(greater than r ). 

amining times t < lzlzl/ Iv121 and times t > 1x .*1) 12 1 / ~ 1 2 1  . 
It will be seen that the analysis falls naturally into ex- 

0 

We s ta r t  f rom (2 .6)  which for s = 2 reads 

a f H(O’(12)) f 2  (1) f (e t H(l’(12)) f 2  (0) 
(at 

The formal solution of (3.1) is 

( l ) ( t )  = s p 2 )  f2(1) ( t = 0 ,  Et) 
f 2  - 

We now define 
-H (123, i3) t S - t(123,i3) f e 

and 

H(123, i 3 )  = H(0)(123) t Q ( i 3 )  . 

(3.3) 

(3 .4)  
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Thus, using (2.  3), (2 .9 ) ,  (3.3), and (3.4) we can rewrite (3.2) a s  

(l)(t) = s 412) f p ( 0 ,  E t )  f 2  
4 

( O )  (') ( O )  t S (123) (f:o'(O,Ct) - fl  ( 0 )  fl ( 0 )  fl ( 0 ) )  + ( S  - tl(123,13) - S -00 (23))fl f l  f l  - t '  

Equation (3. 5) consists of five groups of te rms  which we consider separately 

below. 

The f i rs t  of these i s  
t 

I1 = 1 dt' S 

0 

(12) ldx dv { [ 9 (13) (S_t,(123) - S-t,I123, 23) ) 
- ( t - t ' )  - -3 

It is  c lear  that the [ 131 and [ 231 te rms  behave similarly so that we only 

explicitly consider the [ 131 terms.  F i r s t  note that (3 (13) provides the restr ic-  

tion Ix 15 1 azld that the S operators cancel if for  all t ' ,  0 5 t '  5 t ,  -13 
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> 1. Thus, must be less  than unity a t  some time during the 

integration. If particles [ 21 and [ 31 interact a t  time .C; t '  15 t and 

es [ 11 and [ 31 interact a t  time t ' ,  these conditions a r e  satisfied. 

We denote this trajectory by [ 231 - [ 131. 

as [ 231 - [ 121 - [ 131 and [ 121 - [ 231 - [ 131 a r e  a lso possible but they a r e  

Other interaction sequences such 

shown below to yield smaller contributions to (3.6) as t becomes large,  

Figure 1 shows the sequence [ 231 - [ 131, Note from the figure that 

3 

Thus, for the sequence to occur, t must be such that 

- v ( t '  -i)J < 1 'E23 -23 

(3.7) 

since x ( T j  - 1 .  
-23 

We picture the cone of allowed velocities in relative coordinate 

space in Fig. 2. From Fig. 2 we conclude that the solid angle of allowable 

relative velocities is 

The further assumption is made that 

for those values of x and v for which the integrand does not vanish. -3 -3 

(3.10) 

(3.11) 
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and 
s - x  + x  " , - x  -12 -13 LL* 12 x -23 

(3.12) 

(3.13) 

so that we may write (3.11) as 

t 

We note that f o r  trajectories for which Ix I > 1 for all  time -12 

The expression (3.14) then becomes 

(3.15) 

upon assuming that the velocity integration in (3.14) yields a quantity of 

order  unity. 

When we consider the other interaction sequences such a s  [ 231 - 

[ 123 - [13] , etc. it is clear that the solid angle of relative velocities is 

(3.16) 

so that 3 faster decay than l / t  will result. We conclude therefore that the 

dominant behavior of I is a l / t  decay. 1 

The next group of terms i n  (3 .  5) is 

0 

( 3 . 1 7 )  
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Again we only t reat  the [ 131 te rms  explicitly. Introducing the change of 

va r iabl e s 
x ’ = x ,  x = x  - x  x = x  - x  -1 *l -12 -1 - 2 ’  -13 -1 -3 

enables us to write 

1 ax 1 

a a 
H(O’(12) = H (12) t v * - t -0- 

r -1 (aEl3 *l 

with the relative operator given by 

H (12) = L~~ ’ - a - e(12) * 
a?i 12 r 

(3.18) 

(3.19) 

(3.20) 

We also have 

(3,211 
a 

r r ax H(O’(123) = H (12) t H (13) t v1 - - e (23)  . 
Using the Bbove relations we can c a r r y  out the time integration for some 

of the Lerrns in  (3.17) with the result that the [ 131 contribution to I2 

-(H (12 ) tH  (13))t -M (12)t 
becomes 

r r r 1 dx dv [e - e  -13 -3 

-(H (12)tE.I (13))t’ r 
-H (12) ( t- t‘)  

r r 

-13 0 

It is c lear  that the f i r s t  integral in (3.22) is finite. The secQnd integral 

in  (3.22) may be written as 

(3.22) 

(3.23) 
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The trajectories appropriate for consideration of (3.23) are  shown in 

Fig. 3. The upper limit of the x integration in (3.23) yields a finite 
-1311 

result. We see  this by phase space arguments similar to those used in 

treating (3.6). 

differs and is similar to that following ( 7 . 2 ) .  For the lower limit we note 

However,if no [ 121 interaction occurs then the argument 

that H (13) effectively vanishes since the [ 131 interaction has not yet 

occurred. Thus (3.23) becomes 

r 

A. 

c 

which clearly vanishes. For  t 3 1z12 l/lv I , (3.24) may be written -12 

The f i r s t  term of (3.26) is just 

(3.25) 

(3.26) 

(3.27) 

which is spatially secular. The second term of (3.26) is 
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(3. 28) 

which vanishes in the same manner as (3.25). 

i n  the examination of I (and I to follow) we have treated the integrals 

as i f  the limits of integration were independent of x o r  x In the ap- 

pendix we show that this neglect is jqstified since the additional contribu- 

2 3 

-13 -23' 

tions arising from the l imits of integration al l  cancel. 

The next group of t e rms  we consider is 

t 

I 3 = 1 dt' S - (t  -t 1) (12) 1 d x 3 d z 3  [ 8 ( 1 3 )  $. 8 ( 2 3 ) ]  S-tt(123) 

0 

x ( fJ0)(0,  Et) - f l  ( O ) ( l )  f,(0)(2) f p 3 )  ) . (3.29) 

We use (1. 9 ) ,  (3. 20), and (3 .  21) to ca r ry  out some of the time integrations 

in (3.29) with the result 

P 
t 

a 
dx -13 dv -3 [ -13 v - - ax - 9 ( 2 3 ) ]  s -13 

-Hr (12)( t -t ' ) 
f 1 dt' e 

0 

X e  -H(O)(lZ 3)t 
(3. 30) 

P 
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The f i r s t  integral in (3. 30) i s  finite because both the integrand 

and the range of integration in x a r e  finite. The Q(23) contribution 

in  (3.30) is also finite because if Ix I is of order  unity, the H (12) - 12 r 

operator can only act  for a finite time. If lz12 I is large,  then Ix -23 1 
must a lso be large and e(23) then vanishes. 

- 3  

In order  to proceed with the analysis we a r e  forced to make 

assertions on the behavior of the cQrrelation functions and then demon- 

s t ra te  a posteriori that they a r e  correct.  We will assume here  that 

("(t = 0,  Et) is finite in the region of phase space corresponding to the 82 

two particles having already collided and is zero elsewhere. The rationale 

for this assumption follows from the discussion after (2. 5) where we con- 

cluded that g,(O)(t, Et) was finite in this range of phase space. We make a 

similar assertion for g (O) ( t =  0,  e t ) ,  i. e. , i t  is only nonzero in the region 

of phase space corresponding to two successive binary interactions having 

3 

occurred involving all three particles. 

Thus, we examine the remaining te rms  in (3 .  30) 

t 

- [ Hr(12) t Hr(13) - 9(23)] t '  (3.31) X e  

x [ f , (O) ( l )  

and conclude that the te rms  involving integration over particle [ 31 must be 

nonsecular. This follows since over most of the range of integration they 

a r e ,  in fact, zero and the range in which they a r e  nonzero i s  of order  
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"If13 1 2 .  The only possibly secular term in (3.31) is thus 

t 
-H,(12) (t-t ') 

dt '  e d23 l213' 

The contribution from the upper limit in (3.32) vanishes since the o p e r a t ~ r s  

stream the arguments of gZ(O) into the region of phase space far which it 

vanishes. This can be seen from Fig, 4 since the 1131 interaction changes 

v by a quantity of order  .unity and x is also changed by order unity, 
-1 -15 

FQr the lower limit of (3. 3 2 )  we refer to Fig. 3 and note that both 

the 9 (13) and 8 (23)  operators vanish. 

operator and (3.32) becomes 

Thus, a /  az13 reduces to the identity 

t 
-Hr(12) ( t - t ' )  - Hr (12 ) t ' - 1 dt' e 

e 1 3 ,  dL3 'L13I e 
.& 0 

It is then clear that for t Ix -1.2 I k 1 2  

apd is secular. 

The next group of te rms  i s  

t 
P 

(3. 33) 

, (3.33) becomes 

(W(t = 0, Et, 12) (3. 34)  g2 

I =-  1 dt' S 

0 

(12) 1 dx dv [ e(13)  S-00(13) p,(')(13) f,(')(2) 4 - ( t - t ' )  - 3  -3 

+ 8 ( 2 3 )  STE0(23) gZ("(23) f1(')(1) 1 . (3.35) 
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This expression clearly vanishes since the S-- operators project the 

coordinates into the regiQn of phase space for which g;') vanishee, 

The las t  group of t e rms  (3.  5) may be written 

t 

( 3 . 3 6 )  

For  t ~ ~ 1 2 ~ / ~ ~ 1 2 ~  , the Soperator commutes with v $0 that ( 3 . 3 6 )  -12' 

becomes 
t 

( 3 . 3 7 )  a a 
d T ( - f  v ' 0  7 - s  aEt -12 

0 

Further, we note that 

so ( 3 . 3 6 )  becomes 
(0) 

-H (l2lt  lo) (t  = 0 ,  Et, 12) a 
aEt -12 acx 82 f v  e - )  e - t  ( -  

a 

(3 ,  38) 

(3 ,391  

which is secular. 

IV. PROPAGATION OF CORRELATIONS 

W e  now want to collect all the secular terms in f and require 2 

that their s u m  vanish so that in fact f will exhibit regular behavior. We 2 

f i r s t  demonstrate that if we remove the secular behavior for t 4 Ix 

we will also have removed i t  for t > Ix l / l v  I . 
1 / 1 ~ 1 2 1  , - 12 

-12 -12 

To prove this statement we write (3 .1 )  in the form 

t H(''(12)) fZ(l)(t) = A(t )  (z- (4.1) 
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and solve this to get 

0 
t 

The trajectories contributing ta (4.2) are  shown in Fig. 5. NQW choose 

and write (4 ,2)  as 

(4.4) 

The last te rm in (4.4) can be transfQrmed so that (4.4) becomes 

(4. 5 )  
0 

'I) for t c Ix l/lv 1 m a y  be f 2  -12 -12 
The corresponding expressiQn for 

We see  that the f i r s t  term of (4. 5) projects f 2 

space region which does not lead to secular behavior. The second te rm of 

into the phase 



(4. 5) is clearly of order  unity. The last  t e rm of  (4. 5) is the same func- 

tion of ( ]z12 l/l-v121) - 1 that the last  t e rm of (4.6) is of t . 
is rid of secular behavipr, (4. 5) will not exhibit secularities. 

Thus if (4.6) 

Upon collecting all the secular te rms  fo r  t < I/ 1 8 we 

which describes the propagation of correlations on the collisional time; 

scale and the mean f ree  path length scale. The quantity 

2 

is clearly the effective collision frequency of particles [ 13 and [ 21 with [ 33. 

We solve (4.7)  and have 

where E t  is an  arbi t rary initial time. The result (4.9) i s  easily 0 

generalized to 
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(4.10) 

with the restriction 

( 0 )  which was imposed in obtaining (4.9). In view of (4.11) we can let the H (12) 

operators act  in (4,lO) and get 

_c - 
( 0 )  - v (t  - t ) ,  xl, z 2 ,  t ,  E x  - Ev &to), Et0] . 82 k 1 2  -12 -12 -12 

It is c lear  that we have the freedom to return to the physical "line" by 

c hoo s i ng 
c 

= t .  

Thus, we simply rewrite (4.12) as 

(4.12) 

(4.13) 

(4.14) 



-21- 

Equation (4.14) can be put into a more  transparent form by noting 

from (2.1) that 

However, with 

the other term 

side of (4.14). 

the restriction (4.11), the f f t e rm in (4.15) vanishes while 

on the right-hand side of (4.15) is identic31 to Zeft-h;knd 

Thus, (4.14) may be written a s  

v v t ,  EZ12, Et)  82 (2129 -1’ -2 ’  
( 0 )  

Et 
c - 

( t - t ) ,  3 ? Z 2 9  t ,  E Z I Z  T Ev -12 (t-?), Gt]. 

E F  

(4.16) 

We can c a r r y  this one step further by projecting g;’) into the region of 

phase space for  which it vanishes by assumption. 

(4.15) in the form 

To accomplish this we w e  

where 
- v  ( t - t )  I 1 5 2  -12 - t 0 (A) - 

t - 7 ,  - ’  

k 1 2  I 1 5 2  I 

(4.17) 

(4.18) 
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and we have written the arguments of H(O'(12) explicitly to avoid confusion. 

Thus, we finally obtain 
E t  

(4.19) 

The result (4.19) is pleasing physically since it shQws that the correlation 

is generated by the collision of two particles and then sticks Qut long thin 

a r m s  in phase space until a collision with a third particle occurs which causes 

it to decay exponentially. 

with this picture. 

8 
A conjecture of G r e w  appears t~ be in accord 

It is interesting to note that the result (4,19) supports the 

Bogoliubov hypothe9is that higher correlation functions become func tionals 

of the one-particle function. W e  see,  however, that it is not a functional of 

f a t  the same time but rather there is a history dependence. 1 

We cgnclude therefore that we have removed the secular behavior 

subject to the assumptions made ear l ier  on the phase space behavior (1 1 of f 2  

of the correlation functions. 

V. VERIFICATION O F  PHASE SPACE ASSUMPTIONS 

We now want to demonstrate that there is a consistent solution of 

the equations of the hierarchy which has the properties we assumed ear l ier  

for the correlation functions, subject to the initial conditions of chaos a t  

time zero. We therefore drop the assumption that gJo)  vanishes unless 

there have been s binary interactions and a r e  thus forced to ccmsider all 

the equations of the hierarchy jointly since, in principle, will depend gs  -1 
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( 0 )  on gs , etc. 

W e  obtain from ( 2 , 6 )  

0 
t 

Our object is to vernove the secular te rms  from {5.1)! and in so doing, 

obtain an equation of evolution for  g (O) which is f ree  of our ear l ier  asrsump- 
S 

tion. 

consider the whole problem all a t  once, 

We find i t  easier  to solve the dynarnical problem piecewise than to 
1 

Thus, we assume that during the 

time interval t - to, which is order  unity but greater than unity numerically, 

none of the s particles is interacting. 

ap interaction interval, 7 ,  of order  unity. 

earlier observations that secular behavior a r i s e s  in t - t 

that 7 intervals contribute te rms  of order  unity. 

We then join such solutisns across  

The rationale follows from our 

intervals and 
0 

We now substitute (2.  3 )  into (5, I)  and write 

a (1 1 (0) (t - to)  I %  4- H (1, *.a)) fs 

-H (1, ..., $ 1  (t  - t o )  (1) (0) 
= -  f S ("(t) t e 

S (to) 
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Since we wish to collect only the seculitr t e rms  from tl+e right-hand side 

of (5.2) we will lump all the nonsecular terms into a quantity called Ns. 

We assume that fs(')(t ) is not secular and that we wi l l  re rnwe tke 

secularities from f ("(t). 

of (5.2) will be put in N . It is convenient to rQduce coordinates relative 

0 

Thus the f i r s t  two terms on the right-han 
S 

S 

to x and write -i 
S s s  

and S 

(0) (i) = H (i) t v - a - C e ( j , s t l )  . (5.4) HS+l S -i, s t1  8xi7 stl 
H (1, ..., st l )  I 

j -1 

Equation (5.2)  may then be written 

s t  

i=l to 1 

S 

Note that the 8 ( j ,  s t 1) te rms  can be included in N 

over which they act i s  limited and thus they produce no secular behavior. 

since the time interval s 

We then c a r r y  out some of the time integrations in (5. 5) and have 



s t  

I t  is c lear  that the f i r s t  group of t e r n s  OR the right-hand side of (5.6) n9w 

should be put into Ns. 

It is convenient to add and subtract terms 1 ( 5 . 6 )  to t r y  to m i r r o r  

the e8rlier calculation, We therefore write 

s t  

0 
i=l t 

i 

(5.7) 



W e  f i r s t  note that, in effect, the las t  t e rm in the expanential operator in 

(5,7) can be thrown into Ns since i t  is only ncmzero i f  both the ith -c and 

(1 1 
2 jth particles interact with the s +Is t  particle. Xn the treatment of f - 1c 

we saw that such Configurations do not yield secular behavior. 

To proceed with the analysis of ( 5 . 7 )  we next note that since the 

s particles do n9t interact with each other, (5.3) reduces to 

6 

a Ys(i) = v - + 
-i ax. 

*l 
j=1, jki 

(5.8) 

(O)(s+l), f;')(i) and f (a 1 (t,) 5 S -1 
Further ,  in our present coordinate system, 

a r e  all  independent of x .. Thus, H s ( i )  and zi ,  s-l.l * a'aqi, s+l - 0 (i, s t l )  
-1 

may bo regarded as cammuting operators. 

integrand of (5. 7 )  may be writteq as 

Therefore, the f i r s t  t e rm in the 

s t  
a 

V . -  2 S dt' J *s+l d~s . t . 1  m i , s t l  
i=l to 

ax chi, s+l 
I s 1  IEi, s t1  

( 5 . 9 )  

From the second group of te rms  i r F  (5 .7)  we get  
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s t  

0 i=l t 

- ' X  I- Ro 

I I  -i, st1 

The upper limit in (5.10) can possibly contribute a secular term.  In the 

- @ ( i ,  s t. 1) acts  in the exponential a'azi, s t l  lower limit we nate that v 
.-i, stl, 

to yield thq identity operator and uppn vising (5.8) we can bring the W s ( i )  

opera tw through. The lower limit of (5.10) can thus be written 

-i, V s+l 

'x . 
-1,s-l-1 II 

(5.11) 

It is advsntageous to force this expression to resemble (5. 9 )  and we thus insert  

the identity operator to get 

S t 

* (5.12) 
- 
- c  00 X .  -1, sSll, 





s t  

0 i=l t 

(5.14) 

Next we note that the operator 

(5.15) 

occurring in (5.13) describes the usual two.-particle interaction and for  

t ' - t  3.1 
0 

we can replace (5.15) by 

Thus, we may rewrite ( 5 . 1 3 )  as 

S 

(5.16) 

(5.18) 
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If we POW substitute the cluster expansion in (5.18) there results 

s 
a 

-csti d ~ s + i  Mi, V s t l  * azi, stl = c  s.. 
i=l 

where F and G a r e  functionals of the R &nd N respectively. We do 

not write out the explicit expressions for F and G here  but simply note 

that they a r e  complicated sums of products of the R ' s  and N ' s  involving 

j particles with 1 5 j 5 s . 

S s S S J  

s S 

0'  
From (2.1) we have, for the time interval t - t 

Thus , combining (5.19) and (5.20) we get 

(5.20) 

- -  - E v  (v  ... v ,Et) g i g )  t € ~ t i ~  1 + ~ G ( N ~ )  . (5. 21) -1 - s  S 

In writing (5.21) we have defined the generalized collision frequency 
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v ( z l ,  ..., * S  v , Et) = dv - s t l  I - i , s t l  V I 
i=l 

(5.22) 

The expression on the right-hand side of (5.22) evaluated a t  x i, st111 = + m  

has been lumped with F to become F'. 

The piecing procedure for solving the complete problem then con- 

s is ts  of using (5.21) in the intervals in which the s particles a r e  not inter-  

acting,and then using (2.'1) in the intervals in which they do interact. Clearly, 

for a finite number of interactions we introduce a relative e r r o r  of order  E 

in this way since we have used (2.1) rather than an  equation good to one higher 

order  in E as is (5.21). This relative e r r o r  does not influence the outcome 

of the proof,however, since we wish to make statements concerning a zeroth 

order  quantity. 

In addition to the piecing procedure we will use a n  iterative procedure 

The lowest order  approximation consists of neglecting F'{R } to solve (5.21). 

in (5.21). Note that the interval can be as long as t - t - 1/€ . Now, G { Ns} 

certainly has at least  one t e rm which behaves as l/t - t o  while a l l  the others 

behave as 

S 

0 

(5.23) 

Therefore,  the G{N } t e rms  can a t  best produce a term which is of order  

We proceed to the E in (g 

S 

( O )  after integrating for  a time of order  1 / ~ .  
s )o 
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next i terate by substituting (g (o))o into Fl {R 3 By carefully examining 

R in (5.14) using arguments analogous to those used ear l ier  for f we 

can conclude that no secular t e rms  are  produced. 

behaves in the same fashion as the G{N$ t e rms  did in the lowest approxi- 

mation. 

(O) . The net effect is,then, essentially be identical to the equations for (g 

that as far as the present proof is concerned, we can simply drop the F' 

and G t e rms  from consideration and we need not i terate  at all. 

S S 

S 2 

Thus, F1{Rs3 actualry 

(0) We therefore see  that the equations governing (8, )1 will 

s 10 

We can now return to (5.21) and for s = 2 ,  we have 

(5.24) 

Note now that (5.24) holds in  a l l  regions of phase space and f Q r  time intervals 

in which particles [ 11 and [ 21 do not interact with each other. 

-. . ---__ 

However, we 

can now apply (5.24) to the situation in which 

g,(O) (t = 0, E t  = 0, 1,2) 
c; 

and we see that i t  remains 

time of interaction we use 

a g i o )  

at 4- 

= o  (5.25) 

zero until an interaction takes place. During the 

(5.26) 

which then creates the correlation. 

Thus, the above arguments have related g i 0 )  to i ts  physical initial 

value and have demonstrated that the assumption that g i 0 )  vanishes in the 
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region of phase space corresponding to no previous interaction is, in  fact, 

correct. As a by-product we have also obtained (521) for the s particle 

correlations, and can thus describe the long time, long space behavior of, 

all the correlations. 

VI. BEHAVIOR OF fZ(l) for I V  1 << I -12 

On physical grounds we are led to suspect that some eort of singun 

lar behavior a r i s e s  for 

together for times comparable to the time between collisions. 

]z121 << 1 since two particleg might then stay 

We thersfore 

investigate here  the nature of this singular behavior. 

is small  and that the range in configuration space is limited by 

We assume that v - 12 

A crude estimate of the behavior of f (l) follows from (3.2) under these as- 
2 

surnptions. We-may assume that the integrand ~f the t' integratian is of 

For  such configurations, the interval in t '  for which this is so is of order 

-1 (1 1 -1 which indicates that f varies as I for Iv I << 1 

To t reat  this more formally we scale the variables in the usual man- 

1 3 2  I 2 r* 18 

ner of asymptotic analysis. We write 

V 
..* 12 

6 -  
E v ,  -12 

N 

V - 12 
N 1 ( 6 . 3 )  

Assuming that (6.1) holds, we have 
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We then write (2.1) for 6 = 2 in the form 

-4. v * -  a c a* ( - - - ) ) g ,  a a (0) { aat -12 ax av av a512 -1 -2 me 12 

Tntraducing the variables 

V = v  - v  v =  v f v  -12 -1 -2 ' rm -1 -2 

enables us to write 
a a a - , - =  2 -  
-1 -2 n), 12 av av av 

and, by Taylor expanding, 

(0) :v v f 
t ... . (6. 8 )  (0) 3 2 2 1 2  v v l  

V 

8 -2 

We now rewrite ( 6 .  5) in'the scaled variables and 

remain in the scaled version. This yields 

a? a- I a -  0 - r  a 2 - s .  ax - 12 - 12 [ w+ 212 aE12 

require that all the te rms  

v ] N 

- (:12 V I  

with the additional scaling 

( 6 . 9 )  

(6.10) 
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and 

d? 6 - = E .  dt 
(6.11) 

We nexb turn to (3.1) and write i t  in the form 

.a  "2-.3!- * A }  av i" at -12 ax %12 -12 
f2 (1) - 4 - v  

-12 

We note that the second t e rm on the right-hand side of (6,12) is clearly of 

(D)) is a t  best of order  unity. order  unity,while H (f The third te rm is 
3 

The scaled version of (6.12) is then 

which indicates that 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(1 1 
2 .  and verifies the crude estimate of the behavior of f 

We next examine the question of whether, for some value of 6 ,  

the € expansion used in the paper becomes invalid. The ratio 

(6.16) 

becomes Qf order  unity for 6 = 1/3. We then must examine the contribution 

(0  1 
2 .  

to f1  arising from and compare it with the contribution from g 
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The qgntribution is 

2 
v 12 = o  cp ( bl2 I )  P v 12 

The spatial volume of integration is of order  unity for x 
m 12 

(6.1). Further ,  

determined by 

Thus, the integral in (6.17) is of order 

1/ 3 v - E  12 

2 d v  E .  s lv121 -12 

v = o  12 

(6.18) 

(6.19) 

We therefore conclude that although f 

1 

diverges fo r  Iv I c 4  1, 

the contribution to the kinetic equation for f is of higher order  in E and, 

thus, the original ordering is not upset for 6 >, 1/3 , 

2 -12 

VII. THE BOLTZMANN AND CHOH-UHLENBECK RESULTS 

We can now go back and point out the connection between the preoent 

work and the Boltzmann and Choh-Uhlenbeck results. 

To this end, we f i r s t  go back to (2.9) and (2.10) and write them as 
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and 

’ (7.2) 

In considering (7.1) we immediately note that the Smm operator projects 

the arguments of g (O)  into the phase space region in which i t  vanishes, AS 
1 

for the ff  t e rm in (7.1), we note that Bogoliubov has demanstrated that this 

2 

is just another version of  the standard Boltzmann collision integral. 

H theorem then guarantees the behavior of f 

The 

( 0 )  
1 ’  

We next turn to (7.2). The 8 (12) operator res t r ic ts  Zl2 to be of 

order unity a t  time t o r  the integral will vanish. Trajectories which have 

x ( t )  1 a t  time t and x (0)  - 1 a r e  the only ones which will contribute -12 -12 

to the integral. Thus, we require 

b 1 2 W  - 3p) 
o r ,  estimating, 

We can write (7 .2)  as 

(7.3) 

where the vector F vanishes if Iv 
cm -12 1 > l/t and i s  a t  most of order unity if 

Iv I < l/t. Thus, -12 

and this contribution is well behaved a s  t becomes large. 
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We have then justified the original decomposition of (2.8) intq 

(2 .9 )  and (2.10) and have demonstrated that the standard Boltzmann resvlt  

obtains. 

The next order  result  is ,  from (1. 7) ,  

at,(2) a f l l )  afi[O) 2 - -b - t - = dx dv e(12) (t, Et, t) at act 2 -2 -2 a€ t 

Upon removing secular behavior , we get 

and 

2 
(00, Et, E t)] * 

2 = dx dv e (12)  [fz(’)(t, Et,€ t )  - f 2  -2 -2 

We, of course,  expect that (7. 8) will provide corrections to the Boltzmann 

equation and that (7.9) will describe the quick approach to the collisional 

time scale. 

From (3. l),  we get 

t 
-H(O)( 123)(t -to) (0) 

dx dv3 [ e ( 1 3 ) + 0 ( 2 3 ) ] e  f3  
- H(O )( 12 ) (t  - t ) s - 3 -  fz(l) ( t)  = dt’ e 

0 
t 

This equation continued on next page. 



-39- 

0 t 
(7,101 

In writing (7.10) we have used (7.1) and the fact that the S- operator Pro- 

jects gZ(O) into the region in which i t  vanishes. 

Fo r  substitvtion into (7,8)  we need f 2  (I 1 for  l~~~ I 5 1 and for  t 

large. We note that itself cannot possibly be secular in this range of 

phass space since x 

tributions to f can a r i s e  from cgrrelation functions whose arguments 

a r e  such that zlz w a s  parallel to v 

c'annot possibly be parallel to -12' v However, cgn- 
L** 12 

2 

a t  some time. In principle, we then 
-12 

should use the correlations corrected for the exponential behavior that we 

found eaylier, This is one of the essential differences between the present 

treatment and ear l ier  treatments of this problem. 

The last term on the right-hand side of (7.10) then vanishes since 

the ex derivative of g (O) is aely nonzero if  x 

can now rewrite (7.10) in the form 

is parallel to -v12. We 
LL 2 -12 

This equation continued on next page. 
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1 fi"(3) g2(')(12) t fl(O'(2) gk0)(13) t f;O)(l) g,(')(23) 4- g1(0)(123) 

4. 

(7.11) 

The second te rm on the right-hand side of (7.U) vanishes unkzr the assumption 

that t is less  than 1 ~ 3 { / ' 1 ~ 3 1  since the upper and lower limits of the x 

integration are then identical. 

-311 

We next consider - the term 

which can be written 
c 

The te rm in the x 

(7,12) vanishes for the same reason as given above af ter  (7.11). 

integration which would add to (7.13) in obtaining i t  from 
-1311 

We can now 

integrate (7.13) and get 
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-H *<o 1 (12)(t-to) -H ( 0  1 (12)(t-to) e-H(0)(13)(t-to) - e  

(7.14) 

Clearly, the te rms  involving particles [ 23 and [ 31 can be handled in the 

same way. Thus, (7.11) becomes 

[ -H(O)(123) (t- to) e-H (0  1 (12) ( t- to) 
f 2  = l d x 3 d v  - -3 e 

-H ( 0  1 (12)(t-to) e-H(o)(13)(t-to) -H (0  1 (12)(t-t0) e-H(0)(23)(t-to) 
- e  - e  

P-aw consider the contribution to (7.15) arising from 

- H(O ) (1 2 3 ) ( t ' - t 0 ) 
-H(O)(12)(t-t') l d X 3 d v  - - 3  (e(13) t e (23) )  e 

0 
t 

(7.16) 

A typical set  of trajectories contributing to (7.16) is shown in Fig. 6. 

same figure with [ 11 and { 21 interchanged is also appropriate. Note that 

The 
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there is a [ 121 interaction prior to t 0 

for g ("(12). Further ,  there is a [ 131 o r  [ 231 interaction as required by 

the presence of €3 (13) 4- €3 (23). 

and there i s  thus a nonzero value 

2 

Finally (z12 I 5 1 at time t. We nQte that 

- 
the distance is of order  v (t-t ) N A C .  Thus, assuming the integrand -1 0 

af the phase space integration to be of order  unity, the integral itself will be 

of order  1/ I v I (t-t ) because of the solid angle, The further t '  integra- 

tion then yields the behavior l/t-t It is clear that i f  a greater number of 

2 2 
-1 0 

0' 

binary interactions had occurred in the interval t - t which still satisfied 
0 

the above restrictions,  a result  would have been obtained which vanished 

-1 
more  rapidly than (t-to) . 

The t e rms  

(7.17) 

a l so  yield a behavior of l/(t-t ) from arguments similar to those given above. 
0 

Figure 7 i l lustrates the trajectories appropriate for carrying out the details. 

Of course,  [ 13 and [ 21 can be interchanged. 

We can dispose of the terms arising from g '"(123) immediately by 
3 

0 noting that a t  least  two binary interactions must have occurred prior to t 

for these te rms  to be finite. From solid angle consideration these terms will 

vanish faster than l/(t-t ). 0 

We finally consider the te rms  
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(7.18) 

and rewrite the f i r s t  t e rm in (7.18) as 

(7.20) 

clearly depends on v and v but not on x . Then, -1 -2 Nm 12 

(7.21) 

for Ix 

a [ 121 interaction occurs. 

I C. 1, if both operators project G into the phase space region before - 12 

Thus, (7.21) is t rue if  both 

( 7 . 2 2 )  
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3 
We thus conclude that the second line of (7.19) vanishes faster  than 1/ (t- to) . 
This follows from the argument that (7.22)  forces  us to consider t M t '  in 

order  to get a nonzero contribution. Then, substituting t for t '  in  the 

e -H(')(13)(t1-t0) operator yields 

(7.23) 

in  order  that g ("(13) is not projected into the region in which i t  vanishes. 2 

We thus find a t  least  a l / ( t - t  ) 
3 decay from the velocity integration alone, 

0 

A typical nonvanishing trajectory contributing to the third line of 

(7.19) is shown in Fig. 8. 

to ' t  

interval t - t because of e(13). We also require a [ 121 interaction at time 

t and a [ 121 o r  [ 321 interaction so that the H operators do not cancel. By 

comparison with the previous cases ,  we see  that this contribution will c e r -  

tainly decay at least  as l / ( t - t  ) and most probably faster.  

We see that there must be a [ 131 interaction prior 

to keep g ("(13) nonzero and there must be a [ 131 interaction in the 0 2 

0 

0 

In view of the above, we may write (7.15) a s  

("(t) = l d x  dv (e  -H(0)(123)(t-to) -e -H(')(l2)(t-t0) e -H(')(13)(t-t0) 
f 2  -3 - 3  

(0  1 
+ e  -H (12)(t-t0) f dt' 1 dx3dv - -3  

0 
t 

This equation continued on next page. 
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t A ( t - t o )  t B ( t - t o )  (7.24) 

Here A (t - t ) includes all the te rms  which behave as 1/ (t- tO),  while B 

includes those which decay faster than l /( t- to).  

0 

We then finally get 

(7.25) 

which is the standard Ghoh-Uhlenbeck result. 

However, we note that in obtaining (7.25) we have dropped the term 

lim -do (12 )( t -to) 
e 

t-to- 
(7.26) 

by assuming it  to vanish. In fact, we get no information on g 2 ("(0) in this 

order and,in principle,must determine it by going to next order.  

observe that the term A(t-t ) produces an e r r o r  of order E only if  we require 

We also 

0 
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t - t  - 1/E. This a lso entails computing to higher order  to examine the 
0 

Et dependence of the various functions involved. These higher order  cal-  

culations a r e  not done here  but have been car r ied  out in a paper to appea,r 

subsequently. The results verify that (7. 25)  is correct.  

We next turn to the t ime evolution of the system predicted by 

To do this we need some information which follows from the (7. 25). 

Boltzmann equation (7.1). We know that a s  Et - 00, we have 

where 

-- . 

Further ,  i t  follows from (7.1) that for all Et 

F rom (7.25), we have 

(7 .27 )  - 

(7.28) 

(7.29)  

This equation continued on next page. 
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= - l d v d v d v  -1 -2 -3 d x d x  - 2  -3-1 v ax { S-Jl23) - S  -00 (12) s-00(13) 
-12 

-S (12) S (23) t S  -00 
-00 -00 

= Q .  

By secularity removal, (7. 30) yields 

and 

(7.30) 

(7. 31) 

(7. 32) 

We can now return to (7.25) and consider integrating it with respect 

to Et to search for secular behavior. In the l imit  as Et -. 00 we know that 

0 
1 

- 4  

2 a €  t 
(7.33) 

since f ( O )  takes on the form (7.27) and (7.31) holds. 

Choh-Uhlenbeck triple collision te rm vanishes i f  f ( O )  is  Maxwellian. 

the only secularity producing te rm in (7.25) is 

We a lso  know that the 

Thus, 

1 

1 

which must  therefore be set equal to zero. This leads to 

(7.34) 

(7.35) 
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which we recognize is simply a perturbed Maxwellian, with C Y ,  p , and Y 

determined by normalization. We therefore conclude that if (7.25)  has a 

well-behaved (secularity-free) solution, although we have not found a for  - 

- 

mal H theorem, the system does tend to thermal equilibrium. 

interest  to note from ( 7 . 3 3 )  that the system apparently prefers  not to evolve 

on the E t scale,  and that we can, a t  least  to this order ,  assume that an 

asymptotic representation is achieved without an  E t dependence. 

It is of 

2 

2 

VIII. CONCLUSIONS 

We have seen that i t  is  possible to remove secular behavior to the 

order  we have gone and obtain significant information on the long t ime, 

long space behavior of the various functions in so doing. We have also 

seen that the singular behavior for Iv * 12 

to the order  we have gone. 

I << 1 does not influence our results 

At first glance one might think that some of the above conclusions 

contradict well known results of thermal equilibrium theory. 

closer examination one finds that all  functions reduce, a s  they should, to 

In fact, upon 

their thermal equilibrium counterparts. 

space behavior will be exhibited in thermal equilibrium in examining the 

fluctuation spectrum. 

It i s  c lear  that the long t ime, long 

Finally, we wish to comment on the various te rms  which appear with 

15 the decay 1/t.  

Such terms will clearly give rise to logarithmic behavior in the next order  and 

thus one should expect I n €  te rms  in the expansion. These te rms  have, in 

fact, been found16 and will form the basis for a subsequent paper. 

This type of behavior has been found by Green and Piccarelli.  
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APPENDIX 

We now wish to show that the result  of considering the integration 

limits to be independent of x (x ) for I and I in Section I11 is cor -  -13 -23 2 3 

rect. From (3.17) we have 

t 1 dtl S (12) 1 dx3dv3  e(13)  S (123,23) fl ( 0 )  fl ( 0 )  fl ( 0 )  . - (t - t 1)  - -t '  
0 

In relative coordinates we have 

Thus, (A. 1) becomes 

t l dt' S -(t-t ') (12) 1 dx - 3dv -3 (H(O'(12) - H(')(123,23) 

0 

a ( 0 )  W f W  
1 9 - ) S tl(123,23) f l  f l  

a t v  0 - - v  
-13 ax -1 ax -13 -13 

We next note that 
t 

n 

t '  

where v is obtained from the solution of the two-body problem. -1 

We can then write (A. 3) as 

t - f v (tll)dtlll = 1  'Z13 tl-l 

0 
t - f v (t") dt"] = 0 '213 t l  -1 

This equation continued on next page. 
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a 
-13 -13 

a ) S  ,(123,23)f1 (0) (0) ( 0 )  +I dt' -t fl fl dx dv S 
-3 -3 -(t-t') 

0 a 

where a! and a r e  the same as the limits of the first integral in (A. 5). The 

f i r s t  integral in (A, 5) can be written 

0 a! 

We further rewrite (A. 6 )  as 

t 

0 a 

t 

0 
t 

v (t") dt" I = 0 '213 - -1 

Our object now is to show that the last  t e rm in (A. 5) cancels the 

second te rm in (A. 7 )  leaving a finite term plus the secularity producing term 

that we have already obtained in I Thus, upon using Gauss' theorem, the 2' 

las t  t e rm in (A. 5) becomes 

t 

0 (T 

where (T i s  the surface of the sphere shown in Fig. A. 1. To t reat  the second 

integral in (A. 7 )  i t  is convenient to write the limits in explicit rather than 
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t implicit form. Thus we get 

x - 13 -1 = 1 v (t") dt" 
t If' 

for  the lower limit and t 

x -13 - - = l(0) t l vl(t")dt" 
t 111 

for the upper limit. We therefore write 

(A. 9 )  

(A. 10) 

t 
('1 ( O ) f ( O )  (A.11) 

= t  I d t l l  S - (t-t 1 )  (12) S - t,(123, 23) - vl( t ' )  d z  dZ3 fl  fl 1 
0 0  

The last result follows from simply carrying out the time derivatives using 

Thus, (A.l) becomes 

t 

(A. 12) 

0 CY 

(A. 13) 
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which essentially agrees with (3.22) since the H (13) too terms can be 

treated in a similar fashion to those above and the differences between 

the H and H operators vanish. It is clear that arguments similar to 

those used above can also be used on (3,30)  in examining I 

r 

r 

3-  
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F ig .  1 The [ 2 3 ]  - [ 131 trajectories. 
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Fig. A. 1. Sphere of integration for ( A .  8) .  
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Fig. 2. Cone of allowed velocities. 



Fig .  3.  Trajectories for ( 3 . 2 3 ) .  
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Fig. 4. Trajectories for x = t m  in (3 .32 ) .  
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Fig. 5. Trajectories for (4.2). 
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F ig .  6. Trajectories for (7.16). 
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F i g .  7 .  Trajectories for  ( 7 .  1 7 ) .  



652141 

F ig .  8. Trajectories for  the third l i ne  in  ( 7 .  1 9 ) .  


